资源类型

期刊论文 315

年份

2023 39

2022 26

2021 29

2020 31

2019 19

2018 18

2017 18

2016 16

2015 7

2014 17

2013 16

2012 8

2011 6

2010 12

2009 14

2008 6

2007 2

2006 2

2005 1

2004 4

展开 ︾

关键词

天然气水合物 3

关键技术 2

南海 2

含水量 2

吸附 2

地下水 2

快速充电 2

沙尘暴 2

海水西调 2

深海 2

渤海海峡 2

电动汽车 2

电化学储能 2

膨胀土 2

跨海工程 2

重金属废水 2

风化砂 2

BOT 1

CO2 加氢 1

展开 ︾

检索范围:

排序: 展示方式:

Effects of coarse and fine aggregates on long-term mechanical properties of sea sand recycled aggregate

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 754-772 doi: 10.1007/s11709-021-0711-2

摘要: Typical effects of coarse and fine aggregates on the long-term properties of sea sand recycled aggregate concrete (SSRAC) are analyzed by a series of axial compression tests. Two different types of fine (coarse) aggregates are considered: sea sand and river sand (natural and recycled coarse aggregates). Variations in SSRAC properties at different ages are investigated. A novel test system is developed via axial compression experiments and the digital image correlation method to obtain the deformation field and crack development of concrete. Supportive results show that the compressive strength of SSRAC increase with decreasing recycled coarse aggregate replacement percentage and increasing sea sand chloride ion content. The elastic modulus of SSRAC increases with age. However, the Poisson’s ratio reduces after 2 years. Typical axial stress–strain curves of SSRAC vary with age. Generally, the effect of coarse aggregates on the axial deformation of SSRAC is clear; however, the deformation differences between coarse aggregate and cement mortar reduce by adopting sea sand. The aggregate type changes the crack characteristics and propagation of SSRAC. Finally, an analytical expression is suggested to construct the long-term stress–strain curve of SSRAC.

关键词: sea sand recycled aggregate concrete     recycled coarse aggregate replacement percentage     sea sand chloride ion content     long-term mechanical properties     stress–strain curve    

Chloride binding and time-dependent surface chloride content models for fly ash concrete

S. MUTHULINGAM,B. N. RAO

《结构与土木工程前沿(英文)》 2016年 第10卷 第1期   页码 112-120 doi: 10.1007/s11709-015-0322-x

摘要: Corrosion of embedded rebars is a classical deterioration mechanism of reinforced concrete structures exposed to chloride environments. Such environments can be attributed to the presence of seawater, deicing or sea-salts, which have high concentrations of chloride ion. Chloride ingress into concrete, essential for inducing rebar corrosion, is a complex interaction between many physical and chemical processes. The current study proposes two chloride ingress parameter models for fly ash concrete, namely: 1) surface chloride content under tidal exposure condition; and 2) chloride binding. First, inconsistencies in surface chloride content and chloride binding models reported in literature, due to them not being in line with past research studies, are pointed out. Secondly, to avoid such inconsistencies, surface chloride content and chloride binding models for fly ash concrete are proposed based upon the experimental work done by other researchers. It is observed that, proposed models are simple, consistent and in line with past research studies reported in literature.

关键词: binding isotherms     chloride ingress     concrete     fly ash     surface chloride content    

Compressive behavior and microstructure of concrete mixed with natural seawater and sea sand

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1347-1357 doi: 10.1007/s11709-021-0780-2

摘要: Noncorrosive reinforcement materials facilitate producing structural concrete with seawater and sea sand. This study investigated the properties of seawater and sea sand concrete (SSC), considering the curing age (3, 7, 14, 21, 28, 60, and 150 d) and strength grade (C30, C40, and C60). The compressive behavior of SSC was obtained by compressive tests and digital image correction (DIC) technique. Scanning electron microscope (SEM) and X-ray powder diffraction (XRD) methods were applied to understand the microstructure and hydration products of cement in SSC. Results revealed a 30% decrease in compressive strength for C30 and C40 SSC from 60 to 150 d, and a less than 5% decrease for C60 from 28 to 150 d. DIC results revealed significant cracking and crushing from 80% to 100% of compressive strength. SEM images showed a more compact microstructure in higher strength SSC. XRD patterns identified Friedel’s salt phase due to the chlorides brought by seawater and sea sand. The findings in this study can provide more insights into the microstructure of SSC along with its short- and long-term compressive behavior.

关键词: seawater and sea sand concrete     compressive strength     strain field     microstructure     hydration products    

Long-term durability of onshore coated concrete —chloride ion and carbonation effects

Seyedhamed SADATI,Mehdi K. MORADLLO,Mohammad SHEKARCHI

《结构与土木工程前沿(英文)》 2016年 第10卷 第2期   页码 150-161 doi: 10.1007/s11709-016-0341-2

摘要: Enhancing service life of reinforced concrete (RC) structures located in marine environments is an issue of great interest for design engineers. The present research addresses the effect of surface coatings on service life of onshore RC structures. Long-term performance of concrete samples up to 88 months of exposure at natural marine environment was investigated. Two onshore exposure conditions, including soil and atmosphere and different types of concrete coatings were studied. Carbonation rates of up to 0.5 and 1.5 mm/year were observed at the first 88 months of exposure for soil and atmospheric samples, respectively. Surface chloride ion build-up and variation in chloride ion diffusion were monitored with respect to time, and service life was estimated. Based on the obtained results it is proposed to use the aliphatic acrylic and polyurethane coatings for enhancing the service life of concrete structures in the investigated exposure conditions.

关键词: carbonation     chloride ion     corrosion     service life     surface coating    

Application of machine learning technique for predicting and evaluating chloride ingress in concrete

Van Quan TRAN; Van Loi GIAP; Dinh Phien VU; Riya Catherine GEORGE; Lanh Si HO

《结构与土木工程前沿(英文)》 2022年 第16卷 第9期   页码 1153-1169 doi: 10.1007/s11709-022-0830-4

摘要: The degradation of concrete structure in the marine environment is often related to chloride-induced corrosion of reinforcement steel. Therefore, the chloride concentration in concrete is a vital parameter for estimating the corrosion level of reinforcement steel. This research aims at predicting the chloride content in concrete using three hybrid models of gradient boosting (GB), artificial neural network (ANN), and random forest (RF) in combination with particle swarm optimization (PSO). The input variables for modeling include exposure condition, water/binder ratio (W/B), cement content, silica fume, time exposure, and depth of measurement. The results indicate that three models performed well with high accuracy of prediction (R2 ≥ 0.90). Among three hybrid models, the model using GB_PSO achieved the highest prediction accuracy (R2 = 0.9551, RMSE = 0.0327, and MAE = 0.0181). Based on the results of sensitivity analysis using SHapley Additive exPlanation (SHAP) and partial dependence plots 1D (PDP-1D), it was found that the exposure condition and depth of measurement were the two most vital variables affecting the prediction of chloride content. When the number of different exposure conditions is larger than two, the exposure significantly impacted the chloride content of concrete because the chloride ion ingress is affected by both chemical and physical processes. This study provides an insight into the evaluation and prediction of the chloride content of concrete in the marine environment.

关键词: gradient boosting     random forest     chloride content     concrete     sensitivity analysis.    

Numerical simulation of compaction parameters for sand-filled embankment using large thickness sand filling

Wentao WANG, Chongzhi TU, Rong LUO

《结构与土木工程前沿(英文)》 2018年 第12卷 第4期   页码 568-576 doi: 10.1007/s11709-017-0444-4

摘要: The study uses the finite element method to simulate a new technique of highway sand embankment filling in Jianghan Plain district, which can raise the thickness of sand-filled layer from 30 cm to 70 cm and can significantly shorten the construction period based on the guarantee of sand embankment construction quality. After simulating the three compacting proposals carried out on the field test, the study uses COMSOL software to research on the compacting effects of sand-filled layers in larger thicknesses by 22 ton vibratory roller alone, and then to investigate the steady compacting effect of 12 ton vibratory roller. The simulation results indicate that the sand-filled layer thickness of 70 cm is suitable for the new sand filling technique, and the sand-filled embankment project with tight construction period is suggested to choose the 12 ton vibration roller for steady compaction.

关键词: sand embankment     compaction in large thickness     numerical simulation     small size vibratory roller     steady compaction    

Unified description of sand behavior

Feng ZHANG, Bin YE, Guanlin YE

《结构与土木工程前沿(英文)》 2011年 第5卷 第2期   页码 121-150 doi: 10.1007/s11709-011-0104-z

摘要: In this paper, the mechanical behavior of sand, was systematically described and modeled with a elastoplastic model proposed by Zhang et al. [ ]. Without losing the generality of the sand, a specific sand called as Toyoura sand, a typical clean sand found in Japan, has been discussed in detail. In the model, the results of conventional triaxial tests of the sand under different loading and drainage conditions were simulated with a fixed set of material parameters. The model only employs eight parameters among which five parameters are the same as those used in Cam-clay model. Once the parameters are determined with the conventional drained triaxial compression tests and undrained triaxial cyclic loading tests, then they are fixed to uniquely describe the overall mechanical behaviors of the Toyoura sand, without changing the values of the eight parameters irrespective of what kind of the loadings or the drainage conditions may be. The capability of the model is discussed in a theoretical way.

关键词: constitutive model     sand     stress-induced anisotropy     density     structure    

Insight of chemical environmental risk and its management from the vinyl chloride accident

《环境科学与工程前沿(英文)》 2023年 第17卷 第4期 doi: 10.1007/s11783-023-1652-x

摘要: The combustion of vinyl chloride (VC) after the train derailment accident in Ohio, USA in February, 2023 has caused widespread concern around the world. This paper tried to analyze several issues concerning the accident, including the appropriateness of the VC combustion in the emergency response in this accident, the meanings of so-called “controlled combustion”, the potential environmental risks caused by VC and combustion by-products, and follow-up work. In our view, this accident had surely caused environmental and health risks to some extent. Hence, a comprehensive environmental risk assessment is necessary, and then the site with risk should be comprehensively remediated, hazardous waste should be harmlessly treated as soon as possible. Finally, this accident suggests that further efforts should be taken to bridge the gap between chemical safety management and their environmental risk management.

关键词: Vinyl chloride     Combustion     Chemical safety management     Environmental risk     Emerging contaminants    

Research review of the cement sand and gravel (CSG) dam

Xin CAI, Yingli WU, Xingwen GUO, Yu MING

《结构与土木工程前沿(英文)》 2012年 第6卷 第1期   页码 19-24 doi: 10.1007/s11709-012-0145-y

摘要: The cement sand and gravel (CSG) dam is a new style of dam that owes the advantages both of the concrete faced rock-fill dam (CRFD) and roller compacted concrete (RCC) gravity dam, because of which it has attracted much attention of experts home and abroad. At present, some researches on physic-mechanical property of CSG material and work behavior of CSG dam have been done. This paper introduces the development and characteristics of CSG dam systematically, and summarizes the progress of the study on basic tests, constitutive relation of CSG material and numerical analysis of CSG dam, in addition, indicates research and application aspect of the dam.

关键词: cement sand and gravel (CSG) dam     cement sand and gravel (CSG) material     research review    

Evaluating effect of chloride attack and concrete cover on the probability of corrosion

Sanjeev Kumar VERMA, Sudhir Singh BHADAURIA, Saleem AKHTAR

《结构与土木工程前沿(英文)》 2013年 第7卷 第4期   页码 379-390 doi: 10.1007/s11709-013-0223-9

摘要: Corrosion of reinforced concrete (RC) structures is one of the significant causes of deterioration of reinforced concrete (RC) structures. Chlorination is a major process governing the initiation and advancement of the injurious corrosion of steel bars. Now, several researches on the chlorination of concrete structures have been ongoing around the world. Present article reviews several recently performed chlorination studies, and from results of a field survey evaluates the effect of chloride content on the probability of corrosion and the influence of concrete compressive strength on the chloride content and penetration, also evaluates the effect of concrete cover over the chloride content of the RC structures at rebar depth and on the probability of corrosion.

关键词: concrete     chloride     reinforcement     corrosion     deterioration     cover    

Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts

Jinli ZHANG, Nan LIU, Wei LI, Bin DAI

《化学科学与工程前沿(英文)》 2011年 第5卷 第4期   页码 514-520 doi: 10.1007/s11705-011-1114-z

摘要: Polyvinyl chloride (PVC) has become the third most used plastic after polyethylene and polypropylene and the worldwide demand continues to increase. Polyvinyl chloride is produced by polymerization of the vinyl chloride monomer (VCM), which is manufactured industrially via the dehydrochlorination of dichloroethane or the hydrochlorination of acetylene. Currently PVC production through the acetylene hydrochlorination method accounts for about 70% of the total PVC production capacity in China. However, the industrial production of VCM utilizes a mercuric chloride catalyst to promote the reaction of acetylene and hydrogen chloride. During the hydrochlorination, the highly toxic mercuric chloride tends to sublime, resulting in the deactivation of the catalyst and also in severe environmental pollution problems. Hence, for China, it is necessary to explore environmental friendly non-mercury catalysts for acetylene hydrochlorination as well as high efficiency novel reactors, with the aim of sustainable PVC production via the acetylene-based method. This paper presents a review of non-mercury heterogeneous and homogeneous catalysts as well as reactor designs, and recommends future work for developing cleaner processes to produce VCM over non-mercury catalysts with high activity and long stability.

关键词: polyvinyl chloride     vinyl chloride monomer     acetylene hydrochlorination     non-mercury catalysts     green chemical process    

On corrosion to stainless steel by calcium chloride with different extender

Lv XU, Yuanyang HU, Liwei WANG, Ruzhu WANG,

《能源前沿(英文)》 2010年 第4卷 第2期   页码 181-184 doi: 10.1007/s11708-009-0065-2

摘要: A calcium chloride solution with a different extender, which is made up of either pure calcium chloride, calcium chloride with expanded graphite, or calcium chloride with activated carbon, acts differently on stainless steel. The mass ratio between calcium chloride with expanded graphite or activated carbon is almost 4∶1, which is demonstrated to be the optimum ratio. The experimental research in this paper reveals that, of the three solutions, which are pure calcium chloride, calcium chloride with expanded graphite, and calcium chloride with activated carbon, the strongest oxidation creation and pitting corrosion happened in the solution of calcium chloride with expanded graphite, the weakest oxidation creation happened in the solution of calcium chloride with activated carbon, and pitting corrosion was stronger than oxidation creation in the solution of pure calcium chloride. This paper gives the reasons for these phenomena. Furthermore, based on theory analysis, multiple means and approaches are provided to prevent stainless steel from further corroding.

关键词: stainless steel     corrosion     calcium chloride     expanded graphite     activated carbon     oxidation creation     pitting corrosion    

Effects of microfine aggregate in manufactured sand on bleeding and plastic shrinkage cracking of concrete

Branavan ARULMOLY; Chaminda KONTHESINGHA; Anura NANAYAKKARA

《结构与土木工程前沿(英文)》 2022年 第16卷 第11期   页码 1453-1473 doi: 10.1007/s11709-022-0877-2

摘要: Construction industries have started to utilize manufactured sand (MS) as an effective alternative for river sand in concrete. High-grade parent rocks are crushed to obtain MS, which also produces a considerable amount of microfine aggregate (MFA). The higher percentage of MFA could lead to both positive and negative effects on the performance of cement-based mixes. This research was done to examine the influence of varying MFA levels, specifically 0%, 3%, 6%, 9%, and 12% (by weight) as the partial replacements of MS on bleeding and plastic shrinkage cracking of concrete. In addition to the varying MFA levels, some concrete mixes also included fly ash (FA) and superplasticizer to investigate the effect of free-water content in the mixes. The bleeding test data were taken as on-site measurements, while the cracks from the plastic shrinkage cracking test were evaluated using an image processing technique. The results concluded that the MFA replacements and the effective water-to-cement ratio have a significant effect on the selected concrete properties. With the increasing replacement levels, cumulative bleeding and crack initiation life gradually decreased, while a progressive increase was observed for crack width, crack length, and crack area.

关键词: manufactured sand     fresh concrete     microfines     admixtures     shrinkage     cracking    

Impacts of backwashing on micropollutant removal and associated microbial assembly processes in sand

《环境科学与工程前沿(英文)》 2023年 第17卷 第3期 doi: 10.1007/s11783-023-1634-z

摘要:

● Backwashing in sand filters with 2-h and 4-h EBCTs was simulated.

关键词: Sand filter     Backwashing     Recovery     Micropollutants     Community composition    

Destructive and non-destructive evaluation of concrete for optimum sand to aggregate volume ratio

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1400-1414 doi: 10.1007/s11709-021-0779-8

摘要: Aggregates are the biggest contributor to concrete volume and are a crucial parameter in dictating its mechanical properties. As such, a detailed experimental investigation was carried out to evaluate the effect of sand-to-aggregate volume ratio (s/a) on the mechanical properties of concrete utilizing both destructive and non-destructive testing (employing UPV (ultrasonic pulse velocity) measurements). For investigation, standard cylindrical concrete samples were made with different s/a (0.36, 0.40, 0.44, 0.48, 0.52, and 0.56), cement content (340 and 450 kg/m3), water-to-cement ratio (0.45 and 0.50), and maximum aggregate size (12 and 19 mm). The effect of these design parameters on the 7, 14, and 28 d compressive strength, tensile strength, elastic modulus, and UPV of concrete were assessed. The careful analysis demonstrates that aggregate proportions and size need to be optimized for formulating mix designs; optimum ratios of s/a were found to be 0.40 and 0.44 for the maximum aggregate size of 12 and 19 mm, respectively, irrespective of the W/C (water-to-cement) and cement content.

关键词: aggregates     non-destructive testing     sand-to-aggregate volume ratio (s/a)     maximum aggregate size (MAS)    

标题 作者 时间 类型 操作

Effects of coarse and fine aggregates on long-term mechanical properties of sea sand recycled aggregate

期刊论文

Chloride binding and time-dependent surface chloride content models for fly ash concrete

S. MUTHULINGAM,B. N. RAO

期刊论文

Compressive behavior and microstructure of concrete mixed with natural seawater and sea sand

期刊论文

Long-term durability of onshore coated concrete —chloride ion and carbonation effects

Seyedhamed SADATI,Mehdi K. MORADLLO,Mohammad SHEKARCHI

期刊论文

Application of machine learning technique for predicting and evaluating chloride ingress in concrete

Van Quan TRAN; Van Loi GIAP; Dinh Phien VU; Riya Catherine GEORGE; Lanh Si HO

期刊论文

Numerical simulation of compaction parameters for sand-filled embankment using large thickness sand filling

Wentao WANG, Chongzhi TU, Rong LUO

期刊论文

Unified description of sand behavior

Feng ZHANG, Bin YE, Guanlin YE

期刊论文

Insight of chemical environmental risk and its management from the vinyl chloride accident

期刊论文

Research review of the cement sand and gravel (CSG) dam

Xin CAI, Yingli WU, Xingwen GUO, Yu MING

期刊论文

Evaluating effect of chloride attack and concrete cover on the probability of corrosion

Sanjeev Kumar VERMA, Sudhir Singh BHADAURIA, Saleem AKHTAR

期刊论文

Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts

Jinli ZHANG, Nan LIU, Wei LI, Bin DAI

期刊论文

On corrosion to stainless steel by calcium chloride with different extender

Lv XU, Yuanyang HU, Liwei WANG, Ruzhu WANG,

期刊论文

Effects of microfine aggregate in manufactured sand on bleeding and plastic shrinkage cracking of concrete

Branavan ARULMOLY; Chaminda KONTHESINGHA; Anura NANAYAKKARA

期刊论文

Impacts of backwashing on micropollutant removal and associated microbial assembly processes in sand

期刊论文

Destructive and non-destructive evaluation of concrete for optimum sand to aggregate volume ratio

期刊论文